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The wavelet transform modulus maxima (WTMM) method is generalized to multifractal imag
analysis, providing a statistical characterization of the fluctuating roughness of fractal surfaces.
isotropic 2D version of WTMM methodology is calibrated on deterministic self-similar interfaces an
random self-affine surfaces (fractional Brownian surfaces and multifractal counterparts). Applicati
to high-resolution satellite data and simulated radiance fields for stratocumulus clouds are prese
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Since the late 1970’s, there have been numerous appli
tions of fractal ideas [1] to surface science. Indeed, a wid
variety of natural and technological processes genera
complex interfaces [2]. Numerical techniques have bee
designed for interfaces that are isotropic and self-simil
when magnified equally in all directions and provide goo
estimates of the fractal dimensionDF [1,2]. However,
in the presence of anisotropic scale invariance, differe
methods of computingDF yield different results [3]. Al-
ternatively, one can compute the so-called roughness e
ponentH (supposedly equal to the codimensiond 2 DF)
describing the dependence of the interface’s width wi
measurement scale [1,2]. UnfortunatelyDF and H are
global quantities that do not account for the possibilit
of point-to-point fluctuations in the local regularity of a
fractal surface. Box-counting and correlation algorithm
were successfully adapted [2] to resolve multifractal sca
ing for isotropic self-similar fractals by computation of
the generalized fractal dimensionsDq. As to self-affine
fractals, Frisch and Parisi [4] proposed, in the conte
of turbulence analysis, an alternative multifractal descrip
tion based on the scaling behavior of structure function
Spsld  ksdfldpl , lzp (p integer. 0), wheredflsxd 
fsx 1 ld 2 fsxd is an increment of the recorded signa
f over distancel. Then, after reinterpreting the rough-
ness exponent as a local quantity [jdflsxdj , lhsxd], the
Dshd singularity spectrum is defined as the Hausdorff d
mension of the set of pointsx where the local roughness
(or Hölder) exponenthsxd of f is h. In principle Dshd
can be attained by Legendre transforming thezp ’s. There
are, however, some fundamental drawbacks to the stru
ture function method [5]. Indeed, it generally fails to fully
characterizeDshd since only the strongest singularities o
f are a priori amenable to this analysis [Spsld does not
exist for p , 0]. Moreover, singularities corresponding
to h . 1, as well as regular behavior, bias the estimate
zp. A new approach to multifractal analysis based on th
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continuous wavelet transform (WT) [5] uses the scaling
partition functions computed from the wavelet transfor
modulus maxima (WTMM). The WTMM method allows
a complete statistical analysis of the roughness fluctuatio
of a self-affine function through the entireDshd singularity
spectrum. Applications of this method to 1D signals ha
provided insight into a wide variety of outstanding prob
lems, notably in fully developed turbulence [5,6], fracta
growth phenomena [7], and “DNA walk” statistical anal
ysis [8]. In this Letter we generalize the WTMM metho
from 1D to 2D, with the specific goal to analyze the mult
fractal properties of rough surfaces with fractal dimensio
DF between 2 and 3.

There is an increasing interest in the application of th
WT to image processing [9,10]. Mallatet al. [9] have
extended the WTMM representation in 2D in a mann
inspired from Canny’s multiscale edge detectors. T
idea is to first smooth the digital image by convolutio
with a filter, then compute the gradient of the smooth si
nal. Define two wavelets:C1sx, yd  ≠usx, ydy≠x and
C2sx, yd  ≠usx, ydy≠y, whereusx, yd is a 2D smoothing
function well localized aroundx  y  0. For any func-
tion fsx, yd [ L2sR2d, the WT defined with respect toC1

andC2 can be expressed as a vector [9]:

TCf fg sb, ad  ===hTuf fg sb, adj , (1)

whereTuf fg sb, ad  a22
R R1`

2` us r2b
a dfsrd d2r. If u is

an isotropic wavelet, thenTuf fg sb, ad is a continuous
2D WT of f as originally defined by Murenzi [11]. If
insteadu is just a smoothing filter such as a Gaussia
usrd  exps2r2y2d, then Eq. (1) defines the 2D WT as
the gradient vector offsrd smoothed by dilated versions
usryad of this filter. Mallatet al. [9] define the WTMM, at
a given scalea, by finding positionsb where the modulus
of TCf fg sb, ad is locally maximum in the direction of the
gradient vectorTCf fg. The so-defined WTMM leads to
an efficient analysis of the local regularity off via the
© 1997 The American Physical Society 75
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Hölder exponenthsrd s0 # h # 1d. However, we do not
know a priori whetherf itself or one of its derivatives
is singular at any given point. We therefore extend th
Hölder exponent concept to that of singularity streng
as defined by the largest exponent such that there ex
a polynomialPn of order n satisfying j fsrd 2 Pnsr 2

r0dj # Cjr 2 r0j
hsr0d, for r in the neighborhood ofr0 

sx0, y0d. If n , hsr0d , n 1 1, then f is n (but not
n 1 1) times differentiable atr0. Thus the higher the
exponenthsr0d, the more regular the functionf around
r0. It is now straightforward to generalize the Malla
et al. result [9]. Provided the firstn moments of the
wavelet C vanish (e.g.,C is the nth derivative of the
Gaussian), the WTMM behaves like [12]

jTCf fg sr0, adj  hT 2
C1

f fg sr0, ad 1 T 2
C2

f fg sr0, adj1y2

, ahsr0d, (2)

as we follow the WT “skeleton” defined by the WTMM,
from large to small scales down to the pointr0. Because
of its “scanning” and “zooming” capabilities, the 2D WT
is a mathematical microscope that sees the fluctuatio
of roughness in self-affine surfaces [via local estimatati
of the Hölder exponenthsrd]. Equation (2) allows us to
follow the strategy elaborated for multifractal analysis o
1D signals [5]. The 2D WTMM method thus consists i
defining partition functions with wavelet coefficients from
the WTMM skeleton [12]:

Zsq, ad 
1
a

X
l[L sad

Z
jTCf fg fslsad, agjq dsl , atsqd,

(3)

where L sad is the set of all maxima chains at scalea
and slsad is the curvilinear coordinate along the chai
l. Note that the exponenttsqd, q [ R, has well-known
meaning for some specific values ofq: (i) 2ts0d is the
fractal dimension of the set of singularities off, (ii) ts1d
is related to the capacity dimensionDCsGd  maxf2, 2 2

ts1dg of the graphG of f, generally equal toDF , and (iii)
ts2d is related to the scaling exponentb of the spectral
densitySskd  j f̂skdj2 , jkj2b with b  4 1 ts2d. A
statistical characterization of the fluctuations of regulari
of a self-affine functionfsx, yd can then be achieved
by determining theDshd singularity spectrum from the
Legendre transform oftsqd [512]: Dshd  minqfqh 2

tsqdg.
Figure 1 illustrates how the 2D WTMM enlighten

the hierarchical distribution of singularities in a tuto
rial example, a (zero-area) “snowflake” fractal. We firs
focus our WT microscope on the one-scale snowfla
fractal shown in Fig. 1(a). The WTMM chains compute
at scalesa  1y3 and 1y32 are also shown in Fig. 1(a).
Figure 1(b) shows the WTMM skeleton obtained by con
tinuously joining these chains over a finite range of scale
The branching structure of this skeleton clearly reveals t
construction rule of the one-scale snowflake fractal [11
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FIG. 1. 2D WTMM analysis of self-similar snowflake frac-
tals. usx, yd is the Gaussian function. (a) The one-scal
snowflake and associated WTMM chains at scalea  1y3 and
1y32. (b) Perspective view of the WTMM skeleton. (c)tsqd
vs q. (d) Dq vs q. In (c) and (d): (≤) homogeneous one-scale
snowflake and (±) multifractal two-scale snowflake.

As a ! 0, the WTMM chain provides a better and bet
ter approximation of the snowflake interface. Figure 1(c
shows results obtained with the 2D WTMM method fo
the partition function scaling exponentstsqd. According
to Eq. (3), those exponents were computed from linear r
gressions of lnZ sq, ad versus lna over about two decades
in scale, corresponding to four steps of the constructio
process. Thistsqd is linear inq, as expected for homo-
geneous fractals. Figure 1(d) shows that our numeric
results forDq  ftsqd 1 2qgysq 2 1d agree with theory
[11]: Dq  ln 5y ln 3, independently ofq. Figures 1(c)
and 1(d) also show results of similar analyses of a tw
scale snowflake fractal [11];tsqd is now a concave non-
linear function which translates to decreasingDq’s, the
hallmark of multifractal scaling. The agreement betwee
our numerics and theory demonstrates that our WTM
method can quantify geometrical multifractality in 2D.

Fractional Brownian functionsBHsx, yd are Gauss-
ian stochastic processes with stationary increments, oft
used to generate random self-affine surfaces [1–3] w
known statistical properties:tsqd  qH 2 2, 0 , H ,

1. We tested the 2D WTMM technique on ten512 3 512
realizations ofBH for various values ofH (1y2 cor-
responds to uncorrelated increments, increments be
correlated for any other value). We focus here on th
uncorrelated caseB1y2 since it has ak23 power spectrum,
similar to that of the radiance field investigated furthe
on. Figure 2(a) shows a realization ofB1y2 and Fig. 3(a)
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FIG. 2. 256 grey-scale coding of512 3 512 images. (a)
Brownian surfaceBH1y2. (b) Portion of a LANDSAT image
of typical marine stratocumulus off the coast of Souther
California. (c) Synthetic radiance field computed with a
fractionally integrated singular cascade model.

the scaling of log2fa2Z sq, adgyq versus log2 a for differ-
ent values ofq; over a large range of scales, the data fa
on straight lines that are quite parallel. Figure 3(c) dis
playstsqd as estimated by linear regression from Eq. (3
Statistical convergence is achieved for22 , q , 6 and
the data fall on a line of slopeh  ≠ty≠q  H  1y2.
From linear regressions in Fig. 3(a), we confirm that th
slopesftsqd 1 2gyq are equal toH  1y2, within nu-
merical uncertainty. We obtained equally satisfactor
results when investigatingBH for other values ofH.
As expected from the Legendre transform oftsqd, these
model surfaces are nowhere differentiable with a uniqu
Hölder exponent [1,3]:h  H andDsh  Hd  2. Fur-
ther evidence for this roughness homogeneity appears
Fig. 4(a) showing the WT probability distribution func-

FIG. 3. WTMM estimates of tsqd and Dshd for rough
surfaces. usx, yd is the Gaussian function. log2fa2Zsq, adgyq
vs log2 a, for different q, from a sample of (a) ten Brownian
surfacesBH1y2 and (b) 32 LANDSAT subscenes. (c)tsqd vs
q. (d) Dshd vs h. In (c) and (d): (m) BH1y2, dashed line in
(c) is the theoreticaltsqd  qy2 2 2 (for clarity the data have
been shifted upward by11); (≤) LANDSAT radiance data;
(h) fractionally integrated cascade model; the continuous lin
correspond to the theoretical spectra; (±) synthetic radiance
field.
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tion (pdf) PsssTus., adddd, at different scalesa. When increas-
ing a, the pdf’s become wider and wider but, by plotting
ln P versusTuyaH , they all collapse onto a single curve
which is well approximated by a parabola, as expected fo
Gaussian processes.

Fractal analysis of atmospheric data has gained consid
erable momentum since Lovejoy’s seminal paper [13] on
the area-perimeter relation for clouds and rain. Multifrac-
tal approaches have since been imported into meteoro
ogy from statistical fluid dynamics and deterministic chaos.
Cloud structure has been probed internally by radiosonde
and aircraft and remotely observed with high-resolution
satellite imagery.In situ cloud data reveal strong variabil-
ity of many quantities of interest; for instance, 1D transects
of liquid water density obey multifractal statistics over at
least three decades in scale [14]. Satellite imagery ha
been processed only by spectral or box-counting method
[2]. Being at once persistent and horizontally extended
marine stratocumulus (Sc) layers are responsible for a larg
portion of the Earth’s global albedo, hence its overall en-
ergy balance (i.e., climate). This motivates us to apply 2D
WTMM methodology to characterize marine Sc structure.
We start with a large (.120 km2 3 120 km2) completely
cloudy LANDSAT scene [15] captured with the Thematic
Mapper camera (.30 m resolution) in the0.6 0.7 mm
channel. Figure 2(b) shows a typical512 3 512 por-
tion of the original (4096 3 4096) image where quasi-
nadir viewing radiance at satellite level is digitized on an
eight-bit grey scale. To minimize spurious saturation ef-
fects, WTMM analysis was applied only to one half of the
data that is only7% saturated, namely, 32 selected512 3

512 subscenes. Figure 5 shows maxima chains compute
with Eq. (1), taking u as Gaussian, at three different
scales. Thetsqd curve in Fig. (c), extracted from the scal-
ing behavior of the partition functions defined on these
maxima chains [Eq. (3)], deviates from a straight line in
contrast with homogeneous Brownian surfaces. We note
the agreement betweents2d  20.91 6 0.03 and the es-
timated spectral exponentb  3.00 6 0.05 . ts2d 1 4.
Figure 3(b) shows log2fa2Z sq, adgyq versus log2 a for

FIG. 4. Pdf’s of rescaled WT coefficients. Murenzi’s 2D
continuous WT [11] is used at scalesa  a0, a0y2, a0y4,
a0y8. The analyzing waveletu is the Mexican hat. lnP vs
Tua2H for (a) ten Brownian surfacesB1y2 with H  1y2 and
(b) 32 LANDSAT subimages withH  0.6  hsq  0d, i.e.,
the most frequent Hölder exponent.
77
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FIG. 5. WTMM maxima chains of the LANDSAT subimage
in Fig. 2(b) at different scales: (a)a  a0, (b) a  a0y2, and
(c) a  a0y4. usx, yd is the Gaussian function.

a number ofq’s; apart from finite-size effects at large
scales, scaling is recovered over about a decade ([400
4000 m]) forq . 0 and the slopesftsqd 1 2gyq depend
on q, thus confirming the nonlinearity oftsqd. For
q , 0, the scaling unfortunately deteriorates, probab
due to sampling and saturation effects. Figure 3(
shows theDshd singularity spectrum. More precisely
we obtain its increasing left part (q  ≠Dy≠h . 0), from
which one can say that the strongest singularities ha
hmin  0.33 6 0.03, while the most frequent ones hav
hsq  0d  0.60 6 0.02. The maximum valueDssshsq 
0dddd  2ts0d  2.00 6 0.03 implies that the radiance
field is everywhere singular. Figure 4(b) shows the sam
computation of the pdfPsssTus., adddd at different scales as
in Fig. 4(a) for Brownian surfaces. We find (i) that n
single value ofH collapses all the pdf’s onto a unique
distribution, an additional test of the multifractality o
marine Sc and (ii) that the pdf’s tails are similar to th
stretched exponential behavior observed for the statis
of velocity increments in fully developed turbulence [16

Schertzer and Lovejoy [17] proposed fractionally in
tegrated (i.e., power-law filtered) singular cascades
scale-invariant models for clouds. Upon fractional int
gration ind  2 space of the measures obtained by thep
model” [14,18], one generates self-affine functions wi
hsrd fluctuating from point to point. In Fig. 3(c), the
2D WTMM estimates oftsqd (based on ten512 3 512
synthetic images) are compared to theory [14]tsqd 
2sq 1 1d 2 log2fpq 1 s1 2 pdqg 1 qHp, where ps.
1y2d and1 2 ps,1y2d are the multiplicative weights and
Hp is the exponent of the power-law filter. Good agre
ment is found for21 # q # 5 for this limited sample, a
test of the reliability of our methodology to resolve mu
tifractal scaling of rough surfaces. Finally, the “indepe
dent pixel” approximation can be invoked to compute th
radiance field for the cloud model at the scales of inte
est here [15] [Fig. 2(c)]. Using the 2D WTMM method
we found values for the structural and optical paramet
for the cloud model (p  0.32 andHp  0.64) that give
78
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very closetsqd [Fig. 3(c)] and Dshd [Fig. 3(d)] spectra
for the artificial radiance fields and the LANDSAT data.
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